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Overview 
To support public health decision-making and healthcare planning, we developed a 
model for the five-county Austin-Round Rock Metropolitan Statistical Area (henceforth 
Austin ​) that can provide real-time estimates of the prevalence and transmission rate of 
COVID-19 and project healthcare needs into the future.  

The model incorporates key epidemiological characteristics of the disease, 
demographic information for Austin, and local mobility data from anonymized cell phone 
traces. It uses daily COVID-19 hospitalization data to estimate the changing 
transmission rate and prevalence of disease. The framework can be readily applied to 
provide pandemic situational awareness and short-term healthcare projections in other 
cities around the US.  

In this report, we use COVID-19 hospitalization data for Austin from March 13 to 
December 19, 2020 to estimate the state of the pandemic in late December and project 
hospitalizations through mid January of 2021, under ​three hypothetical scenarios for 
the impact of winter holiday gatherings on the transmission of COVID-19 in 
Austin​. The projections are based on multiple assumptions about the age-specific 
severity of COVID-19 and the role of asymptomatic infections in the transmission of the 
virus. These graphs below do not present the full range of uncertainty for the city of 
Austin, but are intended to provide basic insight into the changing risks of COVID-19 
transmission and potential healthcare surges in Austin.  

Our estimates suggest that if transmission is elevated to levels measured just after the 
Thanksgiving holiday for one week starting on December 24, 2020, then there is a 36% 
chance that the COVID-19 ICU census will reach the estimated capacity of 200 by 
January 7, with a median date of hitting 200 of January 14 (95% prediction interval: 
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December 30-undetermined ). If the higher levels of transmission are sustained for two 1

weeks, then there is a 39% chance that the COVID-19 ICU census will reach the 
estimated capacity of 200 by January 7, with a median date of hitting 200 of January 11 
(95% prediction interval: December 30-undetermined) 

We are posting these results prior to peer review to provide intuition for both policy 
makers and the public regarding both the immediate threat of COVID-19 and the 
importance of heightened social distancing and transmission reducing-precautions as 
we enter the holiday period, including abstaining from indoor social gatherings, keeping 
physical distance, wearing cloth face coverings and staying isolated when symptomatic. 

As new hospitalization data become available, we will provide updated estimates and 
projections on the UT COVID-19 Modeling Consortium’s ​Austin COVID-19 Dashboard​.  

Austin COVID-19 model  
 
The appendix below describes the model in detail. In short, we use mathematical 
equations to track the changing numbers of individuals who are susceptible (not yet 
infected), infected, hospitalized, recovered, and deceased. The model incorporates key 
features of the virus and uses iterated filtering ​[1] ​ to estimate daily transmission rates in 
Austin from a combination of local hospital data (COVID-19 admissions, discharges and 
deaths) as well as SafeGraph mobility trends (cell phone-based estimates of hours 
spent at home and daily trips to public points-of-interest such as grocery stores, 
restaurants, bars and parks ​[2] ​). We use the estimated transmission rates to project 
COVID-19 cases, hospitalizations, ICU visits and deaths several weeks ahead. The 
model makes the following assumptions:  

● Epidemic seeding: February 17th, 2020 with 1 infected adult 

● Transmission rates are modulated by age-specific contact patterns 

● Following infection, cases go through multiple stages of infection: 

Stage 1 ​: Pre-symptomatic and non-contagious for an average of 2.9 days 

Stage 2 ​: Pre-symptomatic contagious for an average of 2.3 days (44% of 
transmission events occur during this period) 

1 The projections are provided through January 20th and do not indicate the longer term probabilities of 
exceeding local ICU capacity. 
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Stage 3 ​: Symptomatic contagious or asymptomatic contagious for an average of 
4 days. The model assumes that 43% of all infections are asymptomatic and that 
asymptomatic cases are 67% as infectious as symptomatic cases.  

● Cases may be hospitalized and/or die at rates that depend on their age and risk 
group.  

○ The overall infection hospitalization rate (IHR) is 4.2% 

○ The overall infection fatality rate (IFR) is 0.54% 

● The duration of hospital stays are estimated from the local hospitalization data 
and can change through time.  
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COVID-19 in Austin through December 23, 2020  
 
We track COVID-19 spread in Austin through a metric called the effective reproduction 
number, ​R ​( ​t​). This indicates the contagiousness of the virus at a given point time and 
roughly corresponds to the average number of people a typical case will infect. 
Measures to slow or prevent transmission, such as social distancing and mask wearing, 
can reduce the reproduction number. Immunity acquired either through past infection or 
vaccination can also reduce the reproduction number. If ​R ​( ​t​) is greater than one, then 
an epidemic will continue to grow; if ​R ​( ​t​) is less than one, it will begin to subside. By 
tracking ​R ​( ​t​), we can detect whether policies and individual-level behaviors are having 
the desired impact and project cases, hospitalizations and deaths into the future.  

We estimate that following Thanksgiving, the reproduction number of COVID-19 spiked 
above 1.4 and then dropped over the following weeks. In the scenarios below, we 
assume that the winter holidays lead to a comparable spike in transmission that lasts 
either one or two weeks starting on December 24, 2020. 

 
Figure 1: ​The estimated effective reproduction number, ​R​(​t​), of the COVID-19 pandemic in 
Austin from February 17, 2020 to December 22, 2020. ​R​(​t​) is an epidemiological quantity used 
to describe the contagiousness of a disease. An epidemic is expected to continue if ​R​(​t​) is 
greater than one and to end if ​R​(​t​) is less than one. This ​epidemic threshold ​ of ​R​(​t​) = 1 is 
indicated by a horizontal dashed line. ​R​(​t​) can be interpreted as the average number of people 
that an infected case will infect. The value of ​R​(​t​) depends on the basic infectiousness of the 
disease, the number of people that are susceptible to infection, and the impact of social 
distancing, mask wearing and other measures to slow transmission. The solid line gives the 
mean daily estimate and the shaded ribbon indicates the 95% credible interval. The apparent 
weekly cyclicity is caused by weekday-weekend fluctuations in mobility. 
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COVID-19 healthcare projections for Austin under 
three winter holiday transmission scenarios 
Under three scenarios for transmission rates during the winter holidays, we project the 
numbers of COVID-19 hospitalizations, ICU patients, and deaths through January 20th, 
2021 (Figures 2-4). The shading in each figure captures uncertainty in the projections.  

The Austin Executive COVID-19 Task Force has estimated that across all hospitals in 
the five-county metropolitan area, the maximum COVID-19 hospital surge capacity is 
1,500 patients and the maximum COVID-19 ICU surge capacity is 200 patients.  Recent 
COVID-19 hospitalization data suggest that between 30% and 40% of hospitalized 
COVID-19 patients are in ICU’s. The model projections for reaching ICU capacity are as 
follows: 

● Current transmission rate (estimated December 19, 2020): A 32% chance that 
the COVID-19 ICU census will reach the estimated capacity of 200 by January 7, 
with the median not reaching 200 by January 20th (95% prediction interval: 
December 31-undetermined ). 2

● One-week spike in transmission: A 36% chance that the COVID-19 ICU census 
will reach the estimated capacity of 200 by January 7th, with a median date of 
hitting 200 of January 14 (95% prediction interval: December 30-undetermined).  

● Two-week spike in transmission: A 39% chance that the COVID-19 ICU census 
will reach the estimated capacity of 200 by January 7th, with a median date of 
hitting 200 of January 11 (95% prediction interval: December 30-undetermined) 

2 The projections are provided through January 20th and do not indicate the longer term probabilities of 
exceeding local ICU capacity. 
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Figure 2: Projected COVID-19 hospitalized patients in the Austin-Round Rock MSA 
through January 20th, 2021. ​Black points represent the reported daily values for all Austin 
area hospitals. Colored lines represent median projections based on recent levels of 
transmission (blue) and scenarios in which the transmission rate increases for one week 
(orange) or two weeks (red) starting on December 24th, to a level estimated following the 
Thanksgiving holiday. Shading indicates the 95% prediction interval for each scenario.  
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Figure 3: Projected COVID-19 ICU patients in the Austin-Round Rock MSA through 
January 20, 2021. ​Black points represent the reported daily values for all Austin area hospitals. 
Colored lines represent median projections based on recent levels of transmission (blue) and 
scenarios in which the transmission rate increases for one week (orange) or two weeks (red) 
starting on December 24th, to a level estimated following the Thanksgiving holiday. Shading 
indicates the 95% prediction interval for each scenario. The maximum COVID-19 ICU surge 
capacity across Austin Area hospitals is approximately 200 patients. 
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Figure 4: Projected daily COVID-19 Hospital mortality in the Austin-Round Rock MSA 
through January 20, 2021. ​Black points represent the reported daily values for all Austin area 
hospitals. Colored lines represent median projections based on the current Austin transmission 
levels (Blue) or an assumed one (Light Red) or two (Dark Red) week bump in transmission 
starting on Christmas Eve similar to what was observed following the Thanksgiving holiday. 
Colored ribbons correspond with the specific scenario and highlight the 95% prediction interval 
for each of the three scenarios. 
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Appendix 

COVID-19 Epidemic Model Structure and Parameters 
The model structure is diagrammed in Figure A1 and described in the equations below. 
For each age and risk group, we build a separate set of compartments to model the transitions 
between the states: susceptible (S), exposed (E), pre-symptomatic infectious (P​Y​), 
pre-asymptomatic infectious (P​A​), symptomatic infectious (I​Y​), asymptomatic infectious (I​A​), 
symptomatic infectious that are hospitalized (I​H​), recovered (R), and deceased (D). The symbols 
S, E, P​Y​, P​A​ ,I​Y​, I​A​, I​H​, R, and D denote the number of people in that state in the given age/risk 
group and the total size of the age/risk group is  

. 

The deterministic model for individuals in age group  and risk group  is given by: 
 

 

 

 

 

 

 

 

 

 
where A and K are all possible age and risk groups, are the relative, , , ωA 

 Y  PA  PY  

infectiousness of the  compartments, respectively, 𝛽 is transmission rate, is, I , I , IIA
 

 Y  PA  PY
a,i  

the mixing rate between age group , and are the recovery rates for the, i ∈ Aa  γ , γ , γ (t) 
A   

Y   
H  

  

compartments, respectively, 𝜎 is the exposed rate,  are the pre-(a)symptomatic, I , IIA
 

 Y  H ,ρA ρY  
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rates, 𝜏 is the symptomatic ratio, 𝜋 is the proportion of symptomatic individuals requiring 
hospitalization, 𝜂 is rate at which hospitalized cases enter the hospital following symptom onset, 
𝜈 is mortality rate for hospitalized cases, and ​𝜇(t)​ is daily instantaneous rate at which terminal 
patients die.  
 
We simulate the model using a stochastic implementation of the deterministic equations. 
Transitions between compartments are governed using the 𝜏-leap method ​[3,4]​ with key 
parameters given in Table A1-2. We simulate the model according to the following equations: 
 

 
 

 

 

 

 

 
 

with 

 

 

 

 

 

 

 

 

 
where ​B​(​n ​,​p ​) denotes a binomial distribution with ​n ​ trials each with probability of success ​p ​.  
denotes the force of infection for individuals in age group  and risk group  and is given by 

 
with  
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where PC1 and PC2 describe the first and second principal components from our mobility data 
as described below. Finally, 

 where ,  and 
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We estimate  , , , , , , , , , and  as described in the model 
fitting section below. 

 

 

Figure A1. Compartmental model of COVID-19 transmission in the Austin MSA. ​Each subgroup 
(defined by age and risk) is modeled with a separate set of compartments. Upon infection, susceptible 
individuals (​S​) progress to exposed (​E​) and then to either pre-symptomatic infectious ( ) orPY  
pre-asymptomatic infectious ( ) from which they move to symptomatic infectious (​I​Y ​) and asymptomaticPA  
infectious (​I​A ​) respectively. All asymptomatic cases eventually progress to a recovered class where they 
remain protected from future infection (​R ​); symptomatic cases are either hospitalized (​I​H ​) or recover. 
Mortality (​D ​) varies by age group and risk group and is assumed to be preceded by hospitalization.  

Mobility trends 
We used mobility trends data from the Austin MSA to inform the transmission rate in our model. 
Specifically, we ran a principal component analysis (PCA) on seven independent mobility 
variables provided by SafeGraph, including home dwell time and visits to universities, bars, 
grocery stores, museums and parks, schools, and restaurants ​[2]​. We regressed the 
transmission rate on the first two principal components from the mobility data as described in 
the modeling equations for .  
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Epidemic starting conditions 
We could not estimate the epidemic start date directly using our model, because the 
transmission rate flexibility gave rise to similarly good fits within a wide-range of potential values 
for . We therefore conducted an independent estimation procedure to obtain reasonable 
epidemic start dates for Austin. We then used our best guess parameters as described in Table 
A2 and chose  as it produced three-day doubling rate in cumulative cases and 
gave  which are consistent with observations for the Austin early outbreak dynamics 
[5]​. We ran 1,000 stochastic simulations with these initial conditions, and identified the wait time 
for when there was 1 admit for Austin. We estimated the start time from the resulting distribution 
of wait times for Austin as February 17, 2020 (IQR = February 11 - February 23), and chose 
February 17th, 2020 as the start date for the model.  

Model likelihood 
We obtained daily hospital admit ( ), discharge data ( ), total hospitalizations ( ), 
and death data ( ) for the Austin MSA. In this model we estimated , , , , 

, , , , ,  and fixed the remaining parameters as described in Table A1-2. We 
assumed all sources of data were negative binomially distributed around their predicted values 
from the SEIR stochastic model, and chose informative, but relatively dispersed priors for 
certain parameters for stability in parameter estimation and to prevent the model from overfitting 
data through large perturbations to time-dependent variables.  
 
Following all of these considerations, the likelihood for our stochastic model was: 

 

where  refers to the four types of data from hospitals,  contains all parameters from Table 
A1 not explicitly listed, and where 

 
  

with 
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and  is the number of days in the fitting time period. 

Fitting method 

In this model we estimated , , , , , , , , ,  and fixed the 
remaining parameters as described in Table A1. Fitting was carried out using the iterated 
filtering algorithm made available through the mif2 function in the pomp package in R ​[6,7]​. This 
algorithm is a stochastic optimization procedure; it performs maximum likelihood estimation 
using a particle filter to provide a noisy estimate of the likelihood for a given combination of the 
parameters.  For each parameter combination we ran 1,000 iterations of iterated filtering, each 
with 10,000 particles. We calculated smoothed posterior estimates for all of the states within the 
model through time (including  and other time-dependent parameters which are technically 
state variables in our model formulation, as it changes through time according to a stochastic 
process). We calculated these smoothed posteriors as follows:  

1. We ran 1,000 independent particle filters at the MLE, each with 10,000 particles. For 
each run, , of particle filtering, we kept track of the complete trajectory of each particle, 
as well as the filtered estimate of the likelihood, . 

2. For each of the 1,000 particle filtering runs, we randomly sampled a single complete 
particle trajectory, giving us 1,000 separate trajectories for all state variables.  

3. We resampled from these trajectories with probabilities proportional to  to give a 
distribution of state trajectories  

The result can be thought of as an empirical-Bayes posterior distribution: that is, a set of 1,000 
smoothed posterior draws from all state variables, conditional on the maximum likelihood 
estimates for the model’s free parameters. This smoothed posterior distribution is how we 
calculate means and credible intervals for   in addition to all other time-varying state 
variables.  
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Table A1. Model parameters ​a  
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Parameters Value Source 

Start date February 17, 2020 Estimated 

Initial infections 1 symptomatic case age 18-49y Assumption 

: daily transmission rate  N/A Estimated 

: recovery rate on 
asymptomatic compartment 

Equal to  Assumption 

: recovery rate on 
symptomatic non-treated 
compartment 

 
 

0.25 
 

He et al. ​[8] 

: symptomatic proportion 
(%) 57 Fox et al. ​[9] 

: exposed rate  1/2.9 Zhang et al. ​[10]​; He et al. ​[8]  

: pre-asymptomatic rate ρA  Equal to  ρY   

: pre-symptomatic rate ρY   He et al. ​[8] 

 ​P​: proportion of 
pre-symptomatic transmission  44% He et al. ​[8] 

: relative infectiousness of ωP  
pre-symptomatic individuals 

 ωP = P
1−P τω /ρ +(1−τ)ω /ρY Y A A

 

τω [Y HR/η+(1−Y HR)/γ ]+(1−τ)ω /γY Y A A  
ω , ω  ωPY = ωP Y ωPA = ωP A  

 

: relative infectiousness of 
infectious individuals in 
compartment I​A  

He et al. ​[11]  

IFR ​: infected fatality ratio, age 
specific (%) 

Low risk: [0.0009, 0.0022, 
0.0339, 0.2520, 0.6440] 

High risk: [0.0092, 0.0218, 
0.3388, 2.5197, 6.4402] 

Age adjusted from Verity et al. ​[12] 

YFR ​: symptomatic fatality 
ratio, age specific (%) 

Low risk: [0.001608,  0.003823, 
0.05943,  0.4420,  1.130] 

High risk: [0.01608,  0.03823, 
0.5943,  4.420, 11.30] 

 

https://www.codecogs.com/eqnedit.php?latex=%5Cbeta(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma%5EA#0
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https://www.codecogs.com/eqnedit.php?latex=%5Cgamma%5EY#0
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https://paperpile.com/c/Ho6KN8/oX7dl
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B1%7D%7B2.3%7D%20#0
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https://paperpile.com/c/Ho6KN8/an5I
https://paperpile.com/c/Ho6KN8/J1Sl0
https://www.codecogs.com/eqnedit.php?latex=YFR%20%3D%20%5Cfrac%7BIFR%7D%7B%5Ctau%7D%20#0


a ​Values given as five-element vectors are age-stratified with values corresponding to 0-4, 5-17, 18-49, 
50-64, 65+ year age groups, respectively. 
 
Table A2 Hospitalization parameters 
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: high-risk proportion, ageh  
specific (%) 

[8.2825, 14.1121, 16.5298, 
32.9912, 47.0568] 

Estimated using 2015-2016 
Behavioral Risk Factor Surveillance 
System (BRFSS) data with 
multilevel regression and 
poststratification using CDC’s list of 
conditions that may increase the 
risk of serious complications from 
influenza ​[13–15]  

Parameters Value Source 

: recovery rate in 
hospitalized compartment 

Fitted  

YHR ​: symptomatic case 
hospitalization rate (%) 

Low risk: [ 0.04021,  0.03091,  1.903, 
4.114,  4.879] 

High risk: [ 0.4021,  0.3091, 19.03, 
41.14, 48.79] 

Age adjusted from Verity et al. 
[12] 

: rate of symptomatic 
individuals go to hospital, 
age-specific  

 

: rate from symptom 
onset to hospitalized 

0.1695 
5.9 day average from symptom 

onset to hospital admission 
Tindale et al. ​[16] 

: rate from 
hospitalized to death 

Fitted  

HFR ​: hospitalized fatality 
ratio, age specific (%) [4, 12.365, 3.122, 10.745, 23.158] 

 

: death rate on 
hospitalized individuals, 
age specific  

 

ICU ​: proportion 
hospitalized people in ICU 0.35 Estimated from Austin 

COVID-19 hospitalization data 

https://paperpile.com/c/Ho6KN8/1Zy8P+g4obk+PKEPT
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma%5EH(t)#0
https://paperpile.com/c/Ho6KN8/J1Sl0
https://www.codecogs.com/eqnedit.php?latex=%5Cpi%20%3D%5Cfrac%7B%5Cgamma%5EY%20*%20YHR%7D%7B%5Ceta%20%2B%20(%5Cgamma%5EY%20-%20%5Ceta)%20YHR%7D%20#0
https://paperpile.com/c/Ho6KN8/gwpid
https://www.codecogs.com/eqnedit.php?latex=%5Cmu(t)#0
https://www.codecogs.com/eqnedit.php?latex=HFR%20%3D%20%5Cfrac%7BIFR%7D%7B%5Ctau%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%5Cnu%20%3D%20%5Cfrac%7B%5Cgamma%5EH%20HFR%7D%7B%5Cmu%20%2B%20(%5Cgamma%5EH-%5Cmu)HFR%7D%20#0


Table A3 Contact matrix. ​Daily number contacts by age group on an average day. 

Estimation of age-stratified proportion of population at high-risk for 
COVID-10 complications 
We estimate age-specific proportions of the population at high risk of complications from 
COVID-19 based on data for Austin, TX and Round-Rock, TX from the CDC’s 500 cities project 
(Figure A2) ​[17]​. We assume that high risk conditions for COVID-19 are the same as those 
specified for influenza by the CDC ​[13]​. The CDC’s 500 cities project provides city-specific 
estimates of prevalence for several of these conditions among adults ​[18]​. The estimates were 
obtained from the 2015-2016 Behavioral Risk Factor Surveillance System (BRFSS) data using a 
small-area estimation methodology called multi-level regression and poststratification ​[14,15]​. It 
links geocoded health surveys to high spatial resolution population demographic and 
socioeconomic data ​[15]​. 

Estimating high-risk proportions for adults. ​To estimate the proportion of adults at high risk 
for complications, we use the CDC’s 500 cities data, as well as data on the prevalence of 
HIV/AIDS, obesity and pregnancy among adults (Table A6). 

The CDC 500 cities dataset includes the prevalence of each condition on its own, rather than 
the prevalence of multiple conditions (e.g., dyads or triads). Thus, we use separate co-morbidity 
estimates to determine overlap. Reference about chronic conditions ​[19]​ gives US estimates for 
the proportion of the adult population with 0, 1 or 2+ chronic conditions, per age group. Using 
this and the 500 cities data we can estimate the proportion of the population  in each agepHR  
group in each city with at least one chronic condition listed in the CDC 500 cities data (Table 
A6) putting them at high-risk for flu complications.  

HIV​: We use the data from table 20a in CDC HIV surveillance report ​[20]​ to estimate the 
population in each risk group living with HIV in the US (last column, 2015 data). Assuming 
independence between HIV and other chronic conditions, we increase the proportion of the 
population at high-risk for influenza to account for individuals with HIV but no other underlying 
conditions.  
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 0-4y 5-17y 18-49y 50-64y 65y+ 

0-4y 1.88 2.02 4.01 0.79 0.28 

5-17y 0.55 7.06 5.02 0.70 0.22 

18-49y 0.37 2.19 8.72 1.45 0.21 

50-64y 0.33 1.62 5.79 2.79 0.50 

65y+ 0.19 0.88 2.36 1.19 1.22 

https://paperpile.com/c/Ho6KN8/PGQb2
https://paperpile.com/c/Ho6KN8/1Zy8P
https://paperpile.com/c/Ho6KN8/5Oc2F
https://paperpile.com/c/Ho6KN8/g4obk+PKEPT
https://paperpile.com/c/Ho6KN8/PKEPT
https://paperpile.com/c/Ho6KN8/cE8rU
https://paperpile.com/c/Ho6KN8/yVjaH


Morbid obesity​: A BMI over 40kg/m​2 ​indicates morbid obesity, and is considered high risk for 
influenza. The 500 Cities Project reports the prevalence of obese people in each city with BMI 
over 30kg/m​2​ (not necessarily morbid obesity). We use the data from table 1 in Sturm and 
Hattori ​[21]​ to estimate the proportion of people with BMI>30 that actually have BMI>40 (across 
the US); we then apply this to the 500 Cities obesity data to estimate the proportion of people 
who are morbidly obese in each city. Table 1 of Morgan et al. ​[22]​ suggests that  51.2% of 
morbidly obese adults have at least one other high risk chronic condition, and update our 
high-risk population estimates accordingly to account for overlap. 

Pregnancy​: We separately estimate the number of pregnant women in each age group and 
each city, following the methodology in CDC reproductive health report ​[23]​.  We assume 
independence between any of the high-risk factors and pregnancy, and further assume that half 
the population are women. 
 
Estimating high-risk proportions for children.​ Since the 500 Cities Project only reports data 
for adults 18 years and older, we take a different approach to estimating the proportion of 
children at high risk for severe influenza. The two most prevalent risk factors for children are 
asthma and obesity; we also account for childhood diabetes, HIV and cancer. 
From Miller et al. ​[24]​, we obtain national estimates of chronic conditions in children. For 
asthma, we assume that variation among cities will be similar for children and adults. Thus, we 
use the relative prevalences of asthma in adults to scale our estimates for children in each city. 
The prevalence of HIV and cancer in children are taken from CDC HIV surveillance report ​[20] 
and cancer research report ​[25]​, respectively. 

We first estimate the proportion of children having either asthma, diabetes, cancer or HIV 
(assuming no overlap in these conditions). We estimate city-level morbid obesity in children 
using the estimated morbid obesity in adults multiplied by a national constant ratio for each age 
group estimated from Hales et al. ​[26]​, this ratio represents the prevalence in morbid obesity in 
children given the one observed in adults. From Morgan et al. ​[22]​, we estimate that 25% of 
morbidly obese children have another high-risk condition and adjust our final estimates 
accordingly. 

Resulting estimates.​ We compare our estimates for the Austin-Round Rock Metropolitan Area 
to published national-level estimates ​[27]​ of the proportion of each age group with underlying 
high risk conditions (Table A6). The biggest difference is observed in older adults, with Austin 
having a lower proportion at risk for complications for COVID-19 than the national average; for 
25-39 year olds the high risk proportion is slightly higher than the national average.  
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Figure A2. Demographic and risk composition of the Austin-Round Rock MSA. ​ ​Bars indicate 
age-specific population sizes, separated by low risk, high risk, and pregnant. High risk is defined 
as individuals with cancer, chronic kidney disease, COPD, heart disease, stroke, asthma, 
diabetes, HIV/AIDS, and morbid obesity, as estimated from the CDC 500 Cities Project ​[17]​, 
reported HIV prevalence ​[20]​ and reported morbid obesity prevalence ​[21,22]​, corrected for 
multiple conditions. The population of pregnant women is derived using the CDC’s method 
combining fertility, abortion and fetal loss rates ​[28–30]​. 
 
 
 
Table A4. High-risk conditions for influenza and data sources for prevalence estimation 
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Condition Data source 

Cancer (except skin), 
chronic kidney disease, 
COPD, coronary heart 
disease, stroke, asthma, 
diabetes 

CDC 500 cities ​[17] 

HIV/AIDS CDC HIV Surveillance report ​[20] 

Obesity CDC 500 cities ​[17]​, Sturm and Hattori ​[21]​, Morgan et al. ​[22] 

Pregnancy National Vital Statistics Reports ​[28]​ and abortion data ​[29] 

https://paperpile.com/c/Ho6KN8/PGQb2
https://paperpile.com/c/Ho6KN8/yVjaH
https://paperpile.com/c/Ho6KN8/KUFAh+3xARJ
https://paperpile.com/c/Ho6KN8/4S69p+pNY6d+LYscT
https://paperpile.com/c/Ho6KN8/PGQb2
https://paperpile.com/c/Ho6KN8/yVjaH
https://paperpile.com/c/Ho6KN8/PGQb2
https://paperpile.com/c/Ho6KN8/KUFAh
https://paperpile.com/c/Ho6KN8/3xARJ
https://paperpile.com/c/Ho6KN8/4S69p
https://paperpile.com/c/Ho6KN8/pNY6d


Table A5. Comparison between published national estimates and Austin-Round Rock MSA 
estimates of the percent of the population at high-risk of influenza/COVID-19 complications. 
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