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Overview 

To support public health decision-making and healthcare planning, we developed a 

model for the five-county Austin-Round Rock Metropolitan Statistical Area (henceforth 

Austin) that can provide real-time estimates of the prevalence and transmission rate of 

COVID-19 and project healthcare needs into the future.  

The model incorporates key epidemiological characteristics of the disease, 

demographic information for Austin, local vaccination estimates, and local mobility data 

from anonymized cell phone traces. It uses daily COVID-19 hospitalization data to 

estimate the changing transmission rate and prevalence of disease. The framework can 

be readily applied to provide pandemic situational awareness and short-term healthcare 

projections in other cities around the US.  

In this report, we use COVID-19 hospitalization data for Austin from March 13, 2020 to 

July 13, 2021 to estimate the state of the pandemic in mid-summer of 2021 and project 

hospitalizations up to October, 2021. We consider the combined impact of the following 

factors:  

● the emergence of the Delta variant (B.1.617.2), which has estimated to be more 

highly transmissible previously circulating variants [1,2] 

● the continued rollout of SARS-CoV-2 vaccines [3]  

● various levels of facemask usage [4] 

● the start of the 2021-2022 school year  

The projections are based on multiple assumptions about the age-specific severity of 

COVID-19 and the role of asymptomatic infections in the transmission of the virus. The 

graphs below do not present the full range of uncertainty for the city of Austin. Rather, 

they are intended to provide basic insight into the changing risks of COVID-19 

https://covid-19.tacc.utexas.edu/
https://paperpile.com/c/JIZvWG/Au3nE+EYTGQ
https://paperpile.com/c/JIZvWG/rTIH
https://paperpile.com/c/JIZvWG/9OS7
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transmission, potential healthcare surges, and the impact of facemask guidelines in 

Austin.  

If the Delta variant continues to emerge and vaccine uptake continues at the current 

pace (reaching ~60% with a single dose by October 1, 2021), then we project that 

COVID-19 hospitalizations will continue to increase exponentially, threatening 

healthcare capacity in the region, unless measures are taken to slow transmission. We 

consider three scenarios in which facemask guidelines and other precautionary 

measures slow transmission, beginning on July 14, 2021. 

We project the following for the three-month period from July 14 to October 1, 2021: 

● Under the status quo (current transmission rate), we estimate that there will be 

12,279 (80%CI: 2,494-18,686) COVID-19 hospitalizations, a 94% probability of 

reaching a 7-day average of 30 new COVID-19 hospitalizations per day (the 

trigger for COVID-19 Alert Stage 4 [5]), and a 87% chance of exceeding the 

estimated COVID-19 ICU capacity of 200 beds.  

● If Austin enacts stricter guidelines including universal face mask 

recommendations for vaccinated and unvaccinated residents and the city largely 

complies with such recommendations, then we estimate that there will be 1,078 

(80% CI: 408-2,140) COVID-19 hospitalizations, which is a 92% reduction 

relative to the status quo projection. The estimated risks of triggering COVID-19 

Alert Stage 4 or surpassing ICU capacity are reduced to 37% and 2%, 

respectively. 

● However, if compliance with such measures is reduced by 50%, then we 

estimate that there will be 4,355 (80%CI: 829-10,219) COVID-19 hospitalizations, 

which is a 65% reduction relative to the status quo projection. The estimated 

risks of triggering COVID-19 Alert Stage 4 or surpassing ICU capacity are 82% 

and 53%, respectively. 

We are posting these results prior to peer review to provide intuition for both policy 

makers and the public regarding both the immediate threat of COVID-19 and the 

importance of heightened social distancing and transmission reducing-precautions as 

the vaccine distribution continues, including keeping physical distance from others, 

wearing facemasks and self-isolating when symptomatic. 

 

 

https://paperpile.com/c/JIZvWG/yHMC
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Austin COVID-19 transmission model  
 

The appendix describes the model in detail. We use mathematical equations to project 

the changing numbers of individuals who are susceptible, infected, hospitalized, 

recovered, and deceased. The model incorporates key features of the virus and uses 

iterated filtering [6] to estimate daily transmission rates in Austin from a combination of 

local hospital data and cell-phone mobility data [7], and vaccination rates by age group 

in the Austin MSA provided by Texas DSHS [3]. The projections below make the 

following assumptions:  

● Epidemic seeding: February 17, 2020 with 1 infected adult 

● Transmission rates are modulated by age-specific contact patterns, with contacts 

among children elevated during the school year [8]. 

● Following infection, cases go through multiple stages of infection: 

Stage 1: Pre-symptomatic and non-contagious for an average of 2.9 days 

Stage 2: Pre-symptomatic contagious for an average of 2.3 days  

Stage 3: Symptomatic or asymptomatic contagious for an average of 4 days 

(43% of infections remain asymptomatic and have 33% lower infectiousness than 

symptomatic cases) 

● Cases may be hospitalized or die at rates that depend on age and risk group. For 

unvaccinated cases infected by non-Delta variants: 

○ The overall infection hospitalization rate (IHR) is 4.2% [1] 

○ The overall infection fatality rate (IFR) is 0.54% [9] 

● The length of hospital stays are estimated from the local data and change 

through time.  

● Vaccines lower the risk of infection by 80% starting two weeks after receiving a 

first dose and by 96% starting two weeks after receiving a second dose [10].  

● The Delta variant is 64% more transmissible and 80% more likely to cause 

infected individuals to be hospitalized [1,2]. We estimate that Delta had become 

the dominant variant in Texas by June 21, 2021, and as of July 16 is expected to 

comprise approximately 87% (95% CI: 85%-90%) of infections [11,12].  

https://paperpile.com/c/JIZvWG/lKsaf
https://paperpile.com/c/JIZvWG/Qmtpg
https://paperpile.com/c/JIZvWG/rTIH
https://paperpile.com/c/JIZvWG/LRKc
https://paperpile.com/c/JIZvWG/Au3nE
https://paperpile.com/c/JIZvWG/1vkKz
https://paperpile.com/c/JIZvWG/897KE
https://paperpile.com/c/JIZvWG/Au3nE+EYTGQ
https://paperpile.com/c/JIZvWG/NNiC+n4EV
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COVID-19 in Austin through July 2, 2021  
 

On our Austin COVID-19 healthcare forecasting dashboard [13], we provide daily 

estimates of the effective reproduction number, R(t) (Figure 1). This quantity indicates 

the contagiousness of the virus at a given point in time and roughly corresponds to the 

average number of people a typical case will infect. Measures to slow or prevent 

transmission, such as social distancing and wearing facemasks, can reduce the 

reproduction number. Immunity acquired either through past infection or vaccination can 

also reduce the reproduction number. If R(t) is greater than one, then an epidemic will 

continue to grow; if R(t) is less than one, it will begin to subside. By tracking R(t), we 

can detect whether policies and individual-level behaviors are having the desired impact 

and project cases, hospitalizations and deaths into the future.  

 
Figure 1: The 7-day average effective reproduction number, R(t), of the COVID-19 pandemic in 

Austin from February 17, 2020 to July 2, 2021. R(t) is an epidemiological quantity used to 

describe the contagiousness of a disease. An epidemic is expected to continue if R(t) is greater 

than one and to end if R(t) is less than one. This epidemic threshold of R(t) = 1 is indicated by a 

horizontal dashed line. R(t) can be interpreted as the average number of people that an infected 

case will infect. The value of R(t) depends on the basic infectiousness of the disease, the 

number of people that are susceptible to infection, and the impact of social distancing, mask 

wearing and other measures to slow transmission. The solid line gives the mean daily 

estimates, and the shaded ribbon indicates the 95% credible interval.  

 

 

https://paperpile.com/c/JIZvWG/eAuW
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COVID-19 projections under four scenarios 

We consider the following four scenarios: 

● Status quo scenario: A reproduction number of 1.4 (95% CrI: 0.8-2.0) estimated 

on July 12, 2021 does not change. Vaccinations continue to be administered at 

the rate reported from June 16 to July 1 (840 doses per day), resulting in ~63% 

of the Austin area population having received at least one dose by October 1, 

2021.  

● Universal face mask and precautionary guidelines 

○ High compliance scenario: The reproduction number is reduced by 

45%, according to an estimate in Germany following the implementation of 

mask mandates [4].  

○ Moderate compliance scenario: Compliance is reduced by 25% relative 

to the high compliance scenario. 

○ Low compliance scenario: Compliance is reduced by 50% relative to the 

high compliance scenario. 

For each scenario, we project COVID-19 hospitalizations and ICU needs through 

October 1, assuming that no other policy or behavioral changes impact the COVID-19 

transmission rate during this period (Figures 2-3). We also estimate the probability and 

time that Austin will trigger a change to Stage 4 (7-day rolling average of COVID-19 

hospital admissions above 30) and the probability and time that COVID-19 ICU cases 

will surpass the estimated regional capacity of 200 beds (Table 1).  

 

  

https://paperpile.com/c/JIZvWG/9OS7
https://www.austintexas.gov/page/covid-19-risk-based-guidelines
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Table 1: Projected impact of tightening face mask and other COVID-19 restrictions on 

healthcare demand in the Austin-Round Rock MSA from July 14 to October 1, 2021. Numbers 

are median values with 80% prediction intervals in parenthesis. 

Scenario COVID-19 
hospitalizations 

COVID-19 
deaths 

Probability  
trigger 
Stage 4 

Median date 
to trigger 
Stage 4* 

Probability  
exceed ICU 

capacity 

Median date  
to reach  

ICU capacity* 

Status quo 
12,279 

(2,494-18,686) 
1,282 

(272-2,196) 
94% 

Jul 23 
(Jul 14 - NR) 

87% 
Aug 21 

(Aug 4 - NR) 

Low 
compliance 

4,355 
(829-10,219) 

458 
(117-1,067) 

82% 
Jul 25 

(Jul 14 - NR) 
53% 

Sep 27 
(Aug 14 - NR) 

Moderate 
compliance 

2,059 
(550-5,187) 

247 
(82-548) 

65% 
Aug 1 

(Jul 14 - NR) 
16% 

NR 
(Sep 27 - NR) 

High 
compliance 

1,078 
(408-2,140) 

146 
(68-262) 

37% 
NR 

(Jul 14 - NR) 
2% 

NR 
(NR - NR) 

* NR indicates that the projection did not reach the trigger or ICU capacity by October 1. 

 

 
Figure 2: Projected COVID-19 hospitalizations in the Austin-Round Rock MSA from July 

14 to October 1, 2021. Black points represent the reported daily COVID-19 patients in all 

Austin area hospitals. Colored lines represent median projections and shading indicates the 

95% prediction interval for each scenario, across 500 stochastic simulations. The horizontal 

black line indicates the estimated COVID-19 hospital capacity of 1,500 patients in the MSA.  
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Figure 3: Projected COVID-19 ICU patients in the Austin-Round Rock MSA from July 14 to 

October 1, 2021. Black points represent the reported daily COVID-19 ICU patients in all Austin 

area hospitals. Colored lines represent median projections and shading indicates the 95% 

prediction interval for each scenario, across 500 stochastic simulations. The horizontal black 

line indicates the estimated ICU capacity of 200 COVID-19 patients in the MSA. 

 

 
Figure 4: Projected daily COVID-19 hospital mortality in the Austin-Round Rock MSA 

from July 14 to October 1, 2021. Black points represent the daily number of COVID-19 deaths 

reported by all Austin area hospitals. COVID-19 deaths occurring outside of hospitals are not 

included in these projections. Colored lines represent median projections and shading indicates 

the 95% prediction interval for each scenario, across 500 stochastic simulations. 
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Appendix 

COVID-19 Epidemic Model Structure and Parameters 

The model structure is diagrammed in Figure A1 and described in the equations below. 

For each age and risk group, we build a separate set of compartments to model the transitions 

between the states: susceptible (S), exposed (E), pre-symptomatic infectious (PY), pre-

asymptomatic infectious (PA), symptomatic infectious (IY), asymptomatic infectious (IA), 

symptomatic infectious that are hospitalized (IH), recovered (R), and deceased (D). The symbols 

S, V, E, EV, PY, PA ,IY, IA, IH, R, and D denote the number of people in that state in the given 

age/risk group and the total size of the age/risk group is  

. 

The deterministic model for individuals in age group  and risk group  is given by: 
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where A and K are all possible age and risk groups, 𝜔𝐴 , 𝜔𝑌 , 𝜔𝑃𝐴, 𝜔𝑃𝑌are the relative 

infectiousness of the 𝐼𝐴 , 𝐼𝑌 , 𝐼𝑃𝐴, 𝐼𝑃𝑌 compartments, respectively, 𝛽 is transmission rate, 𝜙𝑎,𝑖is 

the mixing rate between age group 𝑎, 𝑖 ∈  𝐴, and 𝛾𝐴 , 𝛾𝑌 , 𝛾𝐻(𝑡) are the recovery rates for the 

𝐼𝐴 , 𝐼𝑌 , 𝐼𝐻compartments, respectively, 𝜎 is the exposed rate, 𝜌𝐴 , 𝜌𝑌 are the pre-(a)symptomatic 

rates, 𝜏 is the symptomatic ratio, 𝜋 is the proportion of symptomatic individuals requiring 

hospitalization, 𝜂 is rate at which hospitalized cases enter the hospital following symptom onset, 

𝜈 is mortality rate for hospitalized cases, 𝜇(t) is daily instantaneous rate at which terminal 

patients die,  is the estimated number of susceptible individuals who are vaccinated on a 

given day as described below,  is the increase of chance of infection due to Delta variant,  is 

the increase of chance of infection of vaccinated individuals due to Delta variant, and  is the 

increased chance of hospitalization due to the Delta variant. 

 

We simulate the model using a stochastic implementation of the deterministic equations. 

Transitions between compartments are governed using the 𝜏-leap method [14,15] with key 

parameters given in Table A1-2. We simulate the model according to the following equations: 
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https://paperpile.com/c/JIZvWG/BlRQ8+uh6ft
https://www.codecogs.com/eqnedit.php?latex=S_%7Ba%2Cr%7D(t%2B1)-S_%7Ba%2Cr%7D(t)%3D-P_1#0
https://www.codecogs.com/eqnedit.php?latex=S_%7Ba%2Cr%7D(t%2B1)-S_%7Ba%2Cr%7D(t)%3D-P_1#0
http://www.texrendr.com/?eqn=E_%7Ba%2Cr%7D(t%2B1)-E_%7Ba%2Cr%7D(t)%3DP_1-P_2#0
http://www.texrendr.com/?eqn=E_%7Ba%2Cr%7D(t%2B1)-E_%7Ba%2Cr%7D(t)%3DP_1-P_2#0
https://www.codecogs.com/eqnedit.php?latex=I%5EA_%7Ba%2Cr%7D(t%2B1)-I%5EA_%7Ba%2Cr%7D(t)%3D(1-%5Ctau)P_2-P_3#0
https://www.codecogs.com/eqnedit.php?latex=I%5EA_%7Ba%2Cr%7D(t%2B1)-I%5EA_%7Ba%2Cr%7D(t)%3D(1-%5Ctau)P_2-P_3#0
http://www.texrendr.com/?eqn=I%5EY_%7Ba%2Cr%7D(t%2B1)-I%5EY_%7Ba%2Cr%7D(t)%3D%20%5Ctau%20P_2-P_4#0
http://www.texrendr.com/?eqn=I%5EY_%7Ba%2Cr%7D(t%2B1)-I%5EY_%7Ba%2Cr%7D(t)%3D%20%5Ctau%20P_2-P_4#0
https://www.codecogs.com/eqnedit.php?latex=dS_%7Ba%7D%20%3D%20-Poisson(S_%7Ba%7DF_%7Ba%7D)#0
https://www.codecogs.com/eqnedit.php?latex=dS_%7Ba%7D%20%3D%20-Poisson(S_%7Ba%7DF_%7Ba%7D)#0
https://www.codecogs.com/eqnedit.php?latex=dI%5EA_%7Ba%7D%20%3D%20(1-%5Ctau)Poisson(%5Csigma%20E_%7Ba%7D)%20-%20Poisson(%5Cgamma%5EA%20I%5EA_%7Ba%7D)#0
https://www.codecogs.com/eqnedit.php?latex=dI%5EA_%7Ba%7D%20%3D%20(1-%5Ctau)Poisson(%5Csigma%20E_%7Ba%7D)%20-%20Poisson(%5Cgamma%5EA%20I%5EA_%7Ba%7D)#0
https://www.codecogs.com/eqnedit.php?latex=dI%5EY_%7Ba%7D%20%3D%20%5Ctau%20Poisson(%5Csigma%20E_%7Ba%7D)%20-%20Poisson((1-%5Cpi)%5Cgamma%5EY%20I%5EY_%7Ba%7D)%20-%20Poisson(%5Cpi%20%5Ceta%20I%5EY_%7Ba%7D)#0
https://www.codecogs.com/eqnedit.php?latex=dI%5EY_%7Ba%7D%20%3D%20%5Ctau%20Poisson(%5Csigma%20E_%7Ba%7D)%20-%20Poisson((1-%5Cpi)%5Cgamma%5EY%20I%5EY_%7Ba%7D)%20-%20Poisson(%5Cpi%20%5Ceta%20I%5EY_%7Ba%7D)#0
https://www.codecogs.com/eqnedit.php?latex=dI%5EH_%7Ba%7D%20%3D%20Poisson(%5Cpi%5Ceta%20I%5EY_%7Ba%7D)%20-%20Poisson((1-%5Cnu)%5Cgamma%5EH%20I%5EH_%7Ba%7D)%20-%20Poisson(%5Cnu%20%5Cmu%20I%5EH_%7Ba%7D)#0
https://www.codecogs.com/eqnedit.php?latex=dI%5EH_%7Ba%7D%20%3D%20Poisson(%5Cpi%5Ceta%20I%5EY_%7Ba%7D)%20-%20Poisson((1-%5Cnu)%5Cgamma%5EH%20I%5EH_%7Ba%7D)%20-%20Poisson(%5Cnu%20%5Cmu%20I%5EH_%7Ba%7D)#0
https://www.codecogs.com/eqnedit.php?latex=dR%20%3D%20Poisson(%5Cgamma%5EA%20I%5EA_%7Ba%7D)%20%2B%20Poisson((1-%5Cpi)%5Cgamma%5EY%20I%5EY_%7Ba%7D)%20%2B%20Poisson((1-%5Cnu)%5Cgamma%5EH%20I%5EH_%7Ba%7D)#0
https://www.codecogs.com/eqnedit.php?latex=dR%20%3D%20Poisson(%5Cgamma%5EA%20I%5EA_%7Ba%7D)%20%2B%20Poisson((1-%5Cpi)%5Cgamma%5EY%20I%5EY_%7Ba%7D)%20%2B%20Poisson((1-%5Cnu)%5Cgamma%5EH%20I%5EH_%7Ba%7D)#0
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where B(n,p) denotes a binomial distribution with n trials each with probability of success p. 

Transitions from S to V as a result of vaccination events happen once a day, dependent on 

covariate data supplied to the model. The number of doses given on that day to the age and risk 

group is given as . The number of doses given to individuals who are susceptible is then , 

and of those, those that are effective are , where 

 

 
So that 

 

With  defining the hyper-geometric distribution. 

 

 and   denote the force of infection for unvaccinated and vaccinated individuals in age 

group  and risk group  and is given by 

 

  
with  

 

 

 

, . 

where PC1 and PC2 describe the first and second principal components from our mobility data 

as described below. The adjustment  modifies  to model the impacts of increased 

mask wearing: 

 

where  indicates the impact of masking,  

 

Finally, 

 where ,  and 

 where , . 

We estimate  , , , , , , , , , and  as described in the model fitting 

section below. 
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Figure A1. Compartmental model of COVID-19 transmission in the Austin MSA. Each subgroup 

(defined by age and risk) is modeled with a separate set of compartments. Upon infection, susceptible 

individuals (S) progress to exposed (E) or Vaccinated (V). Exposed individuals progress to either pre-

symptomatic infectious (𝑃𝑌) or pre-asymptomatic infectious (𝑃𝐴) from which they move to symptomatic 

infectious (IY) and asymptomatic infectious (IA) respectively. All asymptomatic cases eventually progress 

to a recovered class where they remain protected from future infection (R); symptomatic cases are either 

hospitalized (IH) or recover. Mortality (D) varies by age group and risk group and is assumed to be 

preceded by hospitalization. Vaccinated individuals can also become exposed to the virus when the Delta 

variant is circulating and are moved to the EV compartment when infected. 

Projecting vaccination rates by age and risk group 

We project future vaccination rates based on past vaccination trends in the Austin-Round Rock, 

TX MSA according to data from the Texas Department of State Health Services (DSHS) [3]. 

DSHS provides data online on vaccinations across Texas by county and age group. We 

aggregate age groups across the five county MSA to obtain estimates for the number of doses 

that have been distributed within the MSA for each age group. DSHS provides vaccination data 

according to four age groups, and we convert these numbers to our model age groups 

proportionate to the respective populations. We project vaccinations forward after July 16 

assuming that vaccination trends from the previous four weeks continue into the future, meaning 

that we take the average number of daily doses delivered from this time period and project 

forward. Though we do not have vaccination data by risk group, we assume vaccines are 

allocated to high-risk groups within each age group first until they reach 90% coverage, and 

then allocate vaccines to the low-risk group.  

https://paperpile.com/c/JIZvWG/rTIH
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Projecting Delta variant prevalence 

To project prevalence of the Delta SARS-CoV-2 variant, we use time series sequencing data for 

Texas from the online genomic surveillance data repository GISAID.org (Figure A2). We fit a 

Bayesian logistic regression model to these data to estimate the relative growth rate of Delta 

against all other existing SARS-CoV-2 variants [16] . With these data, we estimate the Delta has 

a logistic growth rate of 0.076 (95% CI: 0.072-0.080), corresponding to an early doubling time of 

13.1 days (95% CI: 12.6-13.7 days). This is slightly lower than the relative growth rate observed 

in Great Britain, which was approximately 0.111 with a doubling time of 9.0 days, which could 

be due to the competing presence of the gamma variant (P.1) in the United States. 

 

 
Figure A2: Daily prevalence of Delta variant among all SARS-CoV-2 infections, according to 

GISAID.org data. Points represent daily prevalence of the variant among all sequences, with 

bars representing 95% confidence intervals. We fit a Bayesian logistic regression model to the 

data to smooth over daily variation and project Delta prevalence through October 1, 2021. Delta 

had become the dominant variant in Texas by June 21, 2021, and as of July 16 is expected to 

comprise approximately 87% (95% CI: 85%-90%) of infections. 

Mobility trends 

We used mobility trends data from the Austin MSA to inform the transmission rate in our model. 

Specifically, we ran a principal component analysis (PCA) on seven independent mobility 

variables provided by SafeGraph, including home dwell time and visits to universities, bars, 

https://paperpile.com/c/JIZvWG/YcX9
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grocery stores, museums and parks, schools, and restaurants [7]. We regressed the 

transmission rate on the first two principal components from the mobility data as described in 

the modeling equations for .  

Epidemic starting conditions 

We could not estimate the epidemic start date directly using our model, because the 

transmission rate flexibility gave rise to similarly good fits within a wide-range of potential values 

for . We therefore conducted an independent estimation procedure to obtain reasonable 

epidemic start dates for Austin. We then used our best guess parameters as described in Table 

A2 and chose  as it produced three-day doubling rate in cumulative cases and gave 

 which are consistent with observations for the Austin early outbreak dynamics [17]. 

We ran 1,000 stochastic simulations with these initial conditions, and identified the wait time for 

when there was 1 admit for Austin. We estimated the start time from the resulting distribution of 

wait times for Austin as February 17, 2020 (IQR = February 11 - February 23), and chose 

February 17th, 2020 as the start date for the model.  

Model likelihood 

We obtained daily hospital admit ( ), discharge data ( ), total hospitalizations ( ), 

and death data ( ) for the Austin MSA. In this model we estimated , , , , , , 

, , ,  and fixed the remaining parameters as described in Table A1-2. We assumed all 

sources of data were negative binomially distributed around their predicted values from the 

SEIR stochastic model, and chose informative, but relatively dispersed priors for certain 

parameters for stability in parameter estimation and to prevent the model from overfitting data 

through large perturbations to time-dependent variables.  

 

Following all of these considerations, the likelihood for our stochastic model was: 

 

where  refers to the four types of data from hospitals,  contains all parameters from Table 

A1 not explicitly listed, and where 

 

  

with 

 

 

 

https://paperpile.com/c/JIZvWG/Qmtpg
https://paperpile.com/c/JIZvWG/19Ghh
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and  is the number of days in the fitting time period. 

Fitting method 

In this model we estimated , , , , , , , , ,  and fixed the remaining 

parameters as described in Table A1. Fitting was carried out using the iterated filtering algorithm 

made available through the mif2 function in the pomp package in R [18,19]. This algorithm is a 

stochastic optimization procedure; it performs maximum likelihood estimation using a particle 

filter to provide a noisy estimate of the likelihood for a given combination of the parameters.  For 

each parameter combination we ran 1,000 iterations of iterated filtering, each with 10,000 

particles. We calculated smoothed posterior estimates for all of the states within the model 

through time (including  and other time-dependent parameters which are technically state 

variables in our model formulation, as it changes through time according to a stochastic 

process). We calculated these smoothed posteriors as follows:  

1. We ran 1,000 independent particle filters at the MLE, each with 10,000 particles. For 

each run, , of particle filtering, we kept track of the complete trajectory of each particle, 

as well as the filtered estimate of the likelihood, . 

2. For each of the 1,000 particle filtering runs, we randomly sampled a single complete 

particle trajectory, giving us 1,000 separate trajectories for all state variables.  

3. We resampled from these trajectories with probabilities proportional to  to give a 

distribution of state trajectories   

The result can be thought of as an empirical-Bayes posterior distribution: that is, a set of 1,000 

smoothed posterior draws from all state variables, conditional on the maximum likelihood 

estimates for the model’s free parameters. This smoothed posterior distribution is how we 

calculate means and credible intervals for   in addition to all other time-varying state 

variables.  

  

https://paperpile.com/c/JIZvWG/RrtCz+i2oF4
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Table A1. Model parametersa  

Parameters Value Source 

Start date February 17, 2020 Estimated 

Initial infections 1 symptomatic case age 18-49y Assumption 

: daily transmission rate  N/A Estimated 

: recovery rate on 

asymptomatic compartment 
Equal to  Assumption 

: recovery rate on 

symptomatic non-treated 

compartment 

 

 

0.25 

 

He et al. [20] 

: symptomatic proportion  0.57 Fox et al. [21] 

: symptomatic proportion 

among vaccinated 
0.055 [22] 

 effectiveness of single 

dose 
0.80 [10] 

: exposed rate  1/2.9 Zhang et al. [23]; He et al. [20]  

𝜌𝐴: pre-asymptomatic rate Equal to 𝜌𝑌  

𝜌𝑌: pre-symptomatic rate 
 

He et al. [20] 

 P: proportion of pre-

symptomatic transmission  
0.44 He et al. [20] 

𝜔𝑃: relative infectiousness 

of pre-symptomatic 

individuals 

𝜔𝑃

=
𝑃

1 − 𝑃
 
𝜏𝜔𝑌[𝑌𝐻𝑅/𝜂 + (1 − 𝑌𝐻𝑅)/𝛾𝑌] + (1 − 𝜏)𝜔𝐴/𝛾𝐴

𝜏𝜔𝑌/𝜌𝑌 + (1 − 𝜏)𝜔𝐴/𝜌𝐴
 

𝜔𝑃𝑌 = 𝜔𝑃𝜔𝑌 , 𝜔𝑃𝐴 = 𝜔𝑃𝜔𝐴 

 

: relative infectiousness 

of infectious individuals in 

compartment IA 
 

He et al. [24]  

IFR: infected fatality ratio, 

age specific (%) 

Low risk: [0.0009, 0.0022, 0.0339, 

0.2520, 0.6440] 

High risk: [0.0092, 0.0218, 0.3388, 

2.5197, 6.4402] 

Age adjusted from Verity et al. [9] 

YFR: symptomatic fatality 

ratio, age specific (%) 

Low risk: [0.001608,  0.003823,  

0.05943,  0.4420,  1.130] 

High risk: [0.01608,  0.03823,  
 

https://paperpile.com/c/JIZvWG/b6ocB
https://paperpile.com/c/JIZvWG/1555B
https://paperpile.com/c/JIZvWG/CQ2g
https://paperpile.com/c/JIZvWG/897KE
https://paperpile.com/c/JIZvWG/e44Io
https://paperpile.com/c/JIZvWG/b6ocB
https://paperpile.com/c/JIZvWG/b6ocB
https://paperpile.com/c/JIZvWG/b6ocB
https://paperpile.com/c/JIZvWG/R78hh
https://paperpile.com/c/JIZvWG/1vkKz
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0.5943,  4.420, 11.30] 

ℎ: high-risk proportion, age 

specific (%) 

[8.2825, 14.1121, 16.5298, 

32.9912, 47.0568] 

Estimated using 2015-2016 

Behavioral Risk Factor 

Surveillance System (BRFSS) 

data with multilevel regression 

and poststratification using 

CDC’s list of conditions that may 

increase the risk of serious 

complications from influenza [25–

27]  

 increase of chance of 

infection due to Delta 

variant 

 [1,2] 

 increase of chance of 

infection of vaccinated 

individuals due to Delta 

variant 

 [22] 

 increase of chance of 

hospitalization due to Delta 

variant 

 [1] 

aValues given as five-element vectors are age-stratified with values corresponding to 0-4, 5-17, 18-49, 50-

64, 65+ year age groups, respectively. 
 

  

https://paperpile.com/c/JIZvWG/XZQ62+JQPuV+KFcqC
https://paperpile.com/c/JIZvWG/XZQ62+JQPuV+KFcqC
https://paperpile.com/c/JIZvWG/Au3nE+EYTGQ
https://paperpile.com/c/JIZvWG/CQ2g
https://paperpile.com/c/JIZvWG/Au3nE
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Table A2 Hospitalization parameters 

Parameters Value Source 

: recovery rate in 

hospitalized compartment 
Fitted  

YHR: symptomatic case 

hospitalization rate (%) 

Low risk: [ 0.04021,  0.03091,  1.903,  

4.114,  4.879] 

High risk: [ 0.4021,  0.3091, 19.03, 

41.14, 48.79] 

Age adjusted from Verity et al. 

[9] 

: rate of symptomatic 

individuals go to hospital, 

age-specific  
 

: rate from symptom 

onset to hospitalized 
0.1695 

5.9 day average from symptom 

onset to hospital admission 

Tindale et al. [28] 

: rate from hospitalized 

to death 
Fitted  

HFR: hospitalized fatality 

ratio, age specific (%) 
[4, 12.365, 3.122, 10.745, 23.158] 

 

: death rate on 

hospitalized individuals, 

age specific  
 

ICU: proportion 

hospitalized people in ICU 
0.36 

Estimated from Austin COVID-

19 hospitalization data 

 

Table A3 Contact matrix. Daily number contacts by age group on an average day. 

 0-4y 5-17y 18-49y 50-64y 65y+ 

0-4y 1.88 2.02 4.01 0.79 0.28 

5-17y 0.55 7.06 5.02 0.70 0.22 

18-49y 0.37 2.19 8.72 1.45 0.21 

50-64y 0.33 1.62 5.79 2.79 0.50 

65y+ 0.19 0.88 2.36 1.19 1.22 

https://paperpile.com/c/JIZvWG/1vkKz
https://paperpile.com/c/JIZvWG/1mZjk


UT COVID-19 Consortium       18                     July 19, 2021 

Estimation of age-stratified proportion of population at high-risk for 

COVID-19 complications 

We estimate age-specific proportions of the population at high risk of complications from 

COVID-19 based on data for Austin, TX and Round-Rock, TX from the CDC’s 500 cities project 

(Figure A3) [29]. We assume that high risk conditions for COVID-19 are the same as those 

specified for influenza by the CDC [25]. The CDC’s 500 cities project provides city-specific 

estimates of prevalence for several of these conditions among adults [30]. The estimates were 

obtained from the 2015-2016 Behavioral Risk Factor Surveillance System (BRFSS) data using a 

small-area estimation methodology called multi-level regression and poststratification [26,27]. It 

links geocoded health surveys to high spatial resolution population demographic and 

socioeconomic data [27]. 

Estimating high-risk proportions for adults. To estimate the proportion of adults at high risk 

for complications, we use the CDC’s 500 cities data, as well as data on the prevalence of 

HIV/AIDS, obesity and pregnancy among adults (Table A6). 

The CDC 500 cities dataset includes the prevalence of each condition on its own, rather than 

the prevalence of multiple conditions (e.g., dyads or triads). Thus, we use separate co-morbidity 

estimates to determine overlap. Reference about chronic conditions [31] gives US estimates for 

the proportion of the adult population with 0, 1 or 2+ chronic conditions, per age group. Using 

this and the 500 cities data we can estimate the proportion of the population 𝑝𝐻𝑅 in each age 

group in each city with at least one chronic condition listed in the CDC 500 cities data (Table 

A6) putting them at high-risk for flu complications.  

HIV: We use the data from table 20a in CDC HIV surveillance report [32] to estimate the 

population in each risk group living with HIV in the US (last column, 2015 data). Assuming 

independence between HIV and other chronic conditions, we increase the proportion of the 

population at high-risk for influenza to account for individuals with HIV but no other underlying 

conditions.  

Morbid obesity: A BMI over 40kg/m2 indicates morbid obesity, and is considered high risk for 

influenza. The 500 Cities Project reports the prevalence of obese people in each city with BMI 

over 30kg/m2 (not necessarily morbid obesity). We use the data from table 1 in Sturm and 

Hattori [33] to estimate the proportion of people with BMI>30 that actually have BMI>40 (across 

the US); we then apply this to the 500 Cities obesity data to estimate the proportion of people 

who are morbidly obese in each city. Table 1 of Morgan et al. [34] suggests that  51.2% of 

morbidly obese adults have at least one other high risk chronic condition, and update our high-

risk population estimates accordingly to account for overlap. 

Pregnancy: We separately estimate the number of pregnant women in each age group and 

each city, following the methodology in CDC reproductive health report [35].  We assume 

independence between any of the high-risk factors and pregnancy, and further assume that half 

the population are women. 

https://paperpile.com/c/JIZvWG/ARD2w
https://paperpile.com/c/JIZvWG/XZQ62
https://paperpile.com/c/JIZvWG/fP1Lv
https://paperpile.com/c/JIZvWG/JQPuV+KFcqC
https://paperpile.com/c/JIZvWG/KFcqC
https://paperpile.com/c/JIZvWG/fYaEW
https://paperpile.com/c/JIZvWG/GP32Q
https://paperpile.com/c/JIZvWG/INHGd
https://paperpile.com/c/JIZvWG/qUMij
https://paperpile.com/c/JIZvWG/YhHeQ
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Estimating high-risk proportions for children. Since the 500 Cities Project only reports data 

for adults 18 years and older, we take a different approach to estimating the proportion of 

children at high risk for severe influenza. The two most prevalent risk factors for children are 

asthma and obesity; we also account for childhood diabetes, HIV and cancer. 

From Miller et al. [36], we obtain national estimates of chronic conditions in children. For 

asthma, we assume that variation among cities will be similar for children and adults. Thus, we 

use the relative prevalences of asthma in adults to scale our estimates for children in each city. 

The prevalence of HIV and cancer in children are taken from CDC HIV surveillance report [32] 

and cancer research report [37], respectively. 

We first estimate the proportion of children having either asthma, diabetes, cancer or HIV 

(assuming no overlap in these conditions). We estimate city-level morbid obesity in children 

using the estimated morbid obesity in adults multiplied by a national constant ratio for each age 

group estimated from Hales et al. [38], this ratio represents the prevalence in morbid obesity in 

children given the one observed in adults. From Morgan et al. [34], we estimate that 25% of 

morbidly obese children have another high-risk condition and adjust our final estimates 

accordingly. 

Resulting estimates. We compare our estimates for the Austin-Round Rock Metropolitan Area 

to published national-level estimates [39] of the proportion of each age group with underlying 

high risk conditions (Table A6). The biggest difference is observed in older adults, with Austin 

having a lower proportion at risk for complications for COVID-19 than the national average; for 

25-39 year olds the high risk proportion is slightly higher than the national average.  

 
Figure A3. Demographic and risk composition of the Austin-Round Rock MSA. Bars indicate 

age-specific population sizes, separated by low risk, high risk, and pregnant. High risk is defined 

as individuals with cancer, chronic kidney disease, COPD, heart disease, stroke, asthma, 

diabetes, HIV/AIDS, and morbid obesity, as estimated from the CDC 500 Cities Project [29], 

reported HIV prevalence [32] and reported morbid obesity prevalence [33,34], corrected for 

multiple conditions. The population of pregnant women is derived using the CDC’s method 

combining fertility, abortion and fetal loss rates [40–42]. 

https://paperpile.com/c/JIZvWG/cfydU
https://paperpile.com/c/JIZvWG/GP32Q
https://paperpile.com/c/JIZvWG/EXVAc
https://paperpile.com/c/JIZvWG/UWnUr
https://paperpile.com/c/JIZvWG/qUMij
https://paperpile.com/c/JIZvWG/Y6EUg
https://paperpile.com/c/JIZvWG/ARD2w
https://paperpile.com/c/JIZvWG/GP32Q
https://paperpile.com/c/JIZvWG/INHGd+qUMij
https://paperpile.com/c/JIZvWG/TMIrW+9K70f+esoeh
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Table A4. High-risk conditions for influenza and data sources for prevalence estimation 

Condition Data source 

Cancer (except skin), chronic 
kidney disease, COPD, 
coronary heart disease, 
stroke, asthma, diabetes 

CDC 500 cities [29] 

HIV/AIDS CDC HIV Surveillance report [32] 

Obesity CDC 500 cities [29], Sturm & Hattori [33], Morgan et al. [34] 

Pregnancy National Vital Statistics Reports [40] and abortion data [41] 

 

Table A5. Comparison between published national estimates and Austin-Round Rock MSA 

estimates of the percent of the population at high-risk of influenza/COVID-19 complications. 

Age Group 
National 

estimates [38] 

Austin-Round Rock 

(excludes pregnancy) 

Pregnant women 

(percent of age group) 

0 to 6 months NA 8.1 - 

6 months to 4 years 6.8 9.0 - 

5 to 9 years 11.7 14.6 - 

10 to 14 years 11.7 16.7 - 

15 to 19 years 11.8 17.0 3.2 

20 to 24 years 12.4 13.2 10.6 

25 to 34 years 15.7 17.4 9.6 

35 to 39 years 15.7 22.1 3.7 

40 to 44 years 15.7 22.5 0.6 

45 to 49 years 15.7 22.7 - 

50 to 54 years 30.6 37.5 - 

55 to 60 years 30.6 37.4 - 

60 to 64 years 30.6 37.3 - 

65 to 69 years 47.0 53.2 - 

70 to 74 years 47.0 53.2 - 

75 years and older 47.0 53.2 - 

https://paperpile.com/c/JIZvWG/ARD2w
https://paperpile.com/c/JIZvWG/GP32Q
https://paperpile.com/c/JIZvWG/ARD2w
https://paperpile.com/c/JIZvWG/INHGd
https://paperpile.com/c/JIZvWG/qUMij
https://paperpile.com/c/JIZvWG/TMIrW
https://paperpile.com/c/JIZvWG/9K70f
https://paperpile.com/c/JIZvWG/UWnUr
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